Regression analysis of sparse asynchronous longitudinal data.
نویسندگان
چکیده
We consider estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent responses and covariates are observed intermittently within subjects. Unlike with synchronous data, where the response and covariates are observed at the same time point, with asynchronous data, the observation times are mismatched. Simple kernel-weighted estimating equations are proposed for generalized linear models with either time invariant or time-dependent coefficients under smoothness assumptions for the covariate processes which are similar to those for synchronous data. For models with either time invariant or time-dependent coefficients, the estimators are consistent and asymptotically normal but converge at slower rates than those achieved with synchronous data. Simulation studies evidence that the methods perform well with realistic sample sizes and may be superior to a naive application of methods for synchronous data based on an ad hoc last value carried forward approach. The practical utility of the methods is illustrated on data from a study on human immunodeficiency virus.
منابع مشابه
Robust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملFunctional Modeling and Classification of Longitudinal Data
We review and extend some statistical tools that have proved useful for analyzing functional data. Functional data analysis primarily is designed for the analysis of random trajectories and infinite-dimensional data, and there exists a need for the development of adequate statistical estimation and inference techniques. While this field is in flux, some methods have proven useful. These include...
متن کاملFunctional Modelling and Classification of Longitudinal Data*
We review and extend some statistical tools that have proved useful for analysing functional data. Functional data analysis primarily is designed for the analysis of random trajectories and infinite-dimensional data, and there exists a need for the development of adequate statistical estimation and inference techniques. While this field is in flux, some methods have proven useful. These include...
متن کاملResponse-adaptive regression for longitudinal data.
We propose a response-adaptive model for functional linear regression, which is adapted to sparsely sampled longitudinal responses. Our method aims at predicting response trajectories and models the regression relationship by directly conditioning the sparse and irregular observations of the response on the predictor, which can be of scalar, vector, or functional type. This obliterates the need...
متن کاملSemi-parametric Quantile Regression for Analysing Continuous Longitudinal Responses
Recently, quantile regression (QR) models are often applied for longitudinal data analysis. When the distribution of responses seems to be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. In this paper, a semi-parametric quantile regression model is developed for analysing continuous longitudinal responses. The error term's distribution is assumed to be Asymmetr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the Royal Statistical Society. Series B, Statistical methodology
دوره 77 4 شماره
صفحات -
تاریخ انتشار 2015